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From our results, the value of the lattice parameter 
at 20°C is 6.1026/~. This compares with the values 
6.085 (Horak, Machovec & Kosek, 1957), 6.102 (Za- 
chariasen, 1926), 6.1026 (Swanson, Morris, Evans & 
Ulmer, 1964) and 6.1026 at 23°C (Holland & Beck, 
1968). 

From the graph given by Novikova & Abrikosov 
(1963) the thermal-expansion coefficient at 27°C is 
8"5x 10-6°C -1 and our value is 9.03x 10-6°C -I at 
35°C. The mean thermal expansion determined from 
the data of Holland & Beck (1968) is 9.2 x 10-6°C -1 
from 23 to 458 °C whereas our value is 9.67 x 10-6°C -I 
from 35 to 445°C. 

Mercury selenide 
Pure mercury selenide was annealed at 150°C for 

three hours. The reflexions 711,642, and 731 were used 
for the derivation of the lattice parameters. The lattice 
parameters and the thermal expansion coefficients are 
given by the equations: 

at=6-0854+28.61 x 10-6t 
+4.93 x 10-9t2+3.74 x 10-12t 3 

and 
ctt =4.70 x 10-6+ 1-62 x 10-9t + 1.84 x 10-12t 2 

respectively. Some values are given in Table 2. 

Table 2. Lattice parameters and thermal expansion 
coefficients of  mercury selenide 

Temper- 
ature a (~) ~ x 10 6 
(°C) Observed Calculated (°C-0 

34 6.0864 6.0864 4.76 
150 6.0898 6.0898 4.99 
215 6-0919 6.0918 5.13 
265 6.0934 6.0934 5.26 
330 6.0954 6.0955 5.44 
377 6.0971 6.0971 5-57 

The room-temperature lattice parameter determined 
by Cruceanu, Nistor & Niculescu (1966) is a=6.088 A, 
by Bethke (1956) a=6.073 A and by Swanson, Gilfrich 
& Cook (1957) a=6.085 A,; our value is a=6.0864 A 
at 34°C. 

Zhdansova et al. (1966) determined the thermal ex- 
pansion of mercury selenide dilatometrically from 20 
to 500 °K and they have plotted the thermal expansion 
coefficient against temperature. The value taken from 
their graph is about 1.4 x 10-6°C -1 at 27°C; our value 
at 34°C is 4.76 x 10-6°C -1 which is nearly three times 
greater than that of former workers. There seems to 
be some discrepancy here that needs investigation. 

The authors express their thanks to Drs H.D. Ric- 
cius and C. Mande for providing pure zinc telluride 
and mercury selenide. 
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This paper deals with the scattering of neutrons by crystals which contain at least one anomalous 
scatterer. It is shown that anomalous scattering studies provide a powerful method of evaluating the 
amplitudes of lattice waves for crystals like CdS with at least one anomalous scatterer in the unit cell. 

1. Introduction 

It is well known that anomalous-dispersion methods 
provide a powerful tool for the phase determination 

of complex structures by X-ray scattering. If the nu- 
clear resonance energies in a crystal are low and lie in 
the thermal neutron range, as in the case of substances 
like 113Cd, 151Eu, 1495m, and 157Gd, strong anomalous- 
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dispersion effects will occur in neutron scattering. The 
principal effects of anomalous scattering are twofold: 
firstly, the scattering factor turns out to be complex 
and has the form 

f = f o + f '  +if" (1) 

where f0 is the normal scattering factor for wavelengths 
far away from the resonance regions and f '  and f "  
are real and imaginary parts of the resonance correc- 
tion; secondly, f '  and f "  are dependent on the wave- 
lengths of the incident neutrons. Since the real part f '  
of the correction could be five to ten times larger than 
the normal scattering length (Ramaseshan, 1966), Singh 
& Ramaseshan (1968) pointed out that the 'heavy 
atom' technique could be successfully exploited for 
neutron scattering also. Further, by making measure- 
ments at two wavelengths on either side of the reso- 
nance wavelength, the position of the anomalous scat- 
terer could easily be determined and anomalous dis- 
persion effects could provide a useful method for solv- 
ing complex crystal structures. The scattering of neu- 
trons by crystals has been studied by several authors, 
especially by Weinstock (1944), Cassels (1950) and 
Waller & Froman (1952) and there are excellent text 
books on the subject (Maradudin, Montroll & Weiss, 
1963; Bak, 1964), but very little work seems to have 
been done on the scattering of thermal neutrons by 
phonons in a crystal, when the latter has an atom that 
scatters anomalously. It is the object of this note to 
present the results of such a study of the anomalous 
scattering of neutrons by crystals and to demonstrate 
the use of this method to evaluate the amplitude of the 
lattice waves. 

2. The amplitude of the lattice waves 

With the usual notation (Maradudin, Montroll & 
Weiss, 1963), the differential scattering cross section 
per unit solid angle and unit interval of outgoing energy 
of the scattered particle may be written as 

d 2 o  " k 
- S(~ ,  co) (2) 

df2de hko 

where 

where 

S(K, co)--= 123 Pn0 23 <n123A 
no n k l  

exp [iK . x(tk)l lno>lZg (co+ En°hEn ) (3) 

h 2 
hco = ~ (k~-  k2). (4) 

The quantities m, k0, k = k 0 - K  are the mass and the 
initial and final wave vectors of the scattered neutron; 
the frequency co is defined by (4). Further f~ is the 

scattering length of the kth nucleus and since the scat- 
tering is anomalous, it has the form 

fk =flco + f ;  + if~,'. (5) 

The expression (3) for S(K, co) has been evaluated using 
pair distribution functions in space and time as given 
by van Hove (1954). The final result may be written 

N2 l~ exp [--(Wk 1 + W]c2)]f~lA2 S(K, co)= 2re k,k2 

exp {iK. [r(kz)-r(kl)]}(Jo +Ja +J2 + . . . )  

where Wka and We z are the Debye-Waller factors and 

Jo = d( co) A (K) (7) 

• 11 = Z {S~,Ic2(kj)6[co +coj(k)]A(K + 2zck) 
kj 

+ rkxk2(kj)d[co-co~(k)]A(K-2rck)}. (8) 

Further 

h 
S~dc2= N~/M--~M~z R.[K. e(k2lk)K . j  e*(kllk)lj 

[~(kj) + l] 
× . 

2coj(k) (9) 

R[K. e(kzly)K, e*(klly)] 

~(kj) (10) 
× 2~j(k)  ' 

where ~(kj) is the number operator associated with the 
phonon state (kj) and e(k2]k) denotes the normalized 

J 
amplitude of the lattice wave having momentum hk 
and passing through the ith type of atom in the unit 
cell. The terms J0, J1 . . .  represent the cross section 
for neutron scattering of order zero, one, two . . .  etc. 
and the delta factors of the type d(coj(k)+co) and 
6(cog(k)-co) represent emission and absorption pro- 
cesses. 

The expression for the intensity of the diffuse scat- 
tering in the first and higher orders contains the fac- 
tors Selez(kj) and Telk2(kj) which are quadratic func- 
tions of the amplitudes e(k21k) of the lattice waves. 

J 
An analysis of the cross section of the scattering in the 
first and higher orders can therefore yield useful in- 
formation about the amplitude of the lattice waves. 
For simplicity, consider a crystal with two atoms in a 
unit cell of which one at least is an anomalous scatter. 
Let us write 

J] =A1 exp (i01); 

f2=Azexp(iO2); K . [ r ( k 2 ) - r ( k l ) l = K . r  (11) 

and 
0 = (02-  01). 
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We shall also denote the intensity of the Bragg scat- 
tering corresponding to the reciprocal lattice vectors 
K0 and -K0 by I0 and I~. A simple calculation then 
shows that 

A Io = I~ - Io 

4N 2 
2n A1Az exp [-(W1 + W2)] sin 0 sin K0. r .  (12) 

Similarly, considering one-phonon processes, let us 
denote by/1 and I~' the intensity associated with the 
reciprocal lattice vectors Kl+2nk and ( - K x - 2 n k ) .  
Then again one finds 

N 2 
I1 = ~ {A~SH exp ( -  2 W 0 + A~$22 exp ( -  2 IV_,) 

+2AIAzSx2 exp [ - ( W I +  14"2)] cos (KI . r+0)} (13) 

and 

2N z 
AI1-  

7~ 

exp [-(W1 + Wz)]A1AzSIz sin 0 sin K1 . r .  (14) 

From (12) and (14), it follows that 

All (s in KI . r )  (15) 
'~)0 ~--- S12 s i -n  K0 r " 

For any given K0 and K1 this equation at once deter- 
mines $12. If one writes 

e(kx]k) =P1 exp (@1); e(kzlk) =P2 exp (i~z), 
.i j 

then the equations (13)and (15) are sufficient to deter- 
mine either (K1. P1) or (~1 • Pz) in terms of the phase 
difference (~01-~2) between the lattice waves passing 
through the atoms 1 and 2. 

If the neutron scattering experiments are repeated 
for two crystals of the same type, such as CdS, of 
which one contains isotopes that scatter anomalously 
and the other is a normal scatterer, a comparison of 
the scattering experiments allows the complete deter- 
mination of the quantities Sxl and Sz2. For normal 
scattering, we get an equation of the form 

f2Sl l  exp ( -  2 W1) -bf2S22 exp ( -  2 W2): C1. (16) 

The equations (13), (15) and (16) are sufficient for the 
determination of S~ and Sz2, and thus the squares of 
the quantities KI. e(kllk) and K1. e(kzlk) are fully 

J J 

determined. From these the phase difference between 
the lattice waves passing through the two different 
atoms in the unit cell can be readily found. By anal- 
ysing the peaks corresponding to the same k but to a 
different value of the momentum transfer vector, say 

(~),  such that K] + 2nk = reciprocal lattice vector, it is 
possible to evaluate the components of e(kl lk)and 

J 

e(k21k) along different vectors K~, K;' etc., and from 
J 

these the amplitudes can be completely determined. 
By extending the analysis for different values of the 
phonon wave vector k, it is possible to study the varia- 
tion of the amplitudes e(k~lk) (i= 1, 2) with respect to 

! 
the wave vector k. The method of anomalous scatter- 
ing thus provides a powerful means of evaluating the 
amplitudes of the lattice waves as well as their varia- 
tion with respect to the phonon momentum vector k 
for non-centrosymmetric crystals. 

For crystals containing more than two atoms in the 
unit cell, the expressions for AI2 = ( I ~ -  12) provide ad- 
ditional equations, from which it is possible to evaluate 
the wave amplitudes for simpler structures, but it is 
difficult to predict whether a sufficient number of equa- 
tions or peaks will always be obtained to determine 
completely the amplitudes of waves passing through all 
the atoms. Nevertheless, the method provides sufficient 
parameters for valuable information about the wave 
amplitudes to be obtained. 

Normally, the amplitudes of the lattice waves can 
be determined from the secular equation, but this 
requires a knowledge of the force constants as the 
dynamical matrix depends on these. The force con- 
stants, in turn, are determined from the lines or max- 
ima in the first and second order Raman scattering and 
from the elastic constant data. The foregoing analysis 
suggests that anomalous scattering could supply ad- 
ditional equations in the force constants and enable 
one to determine more force constants, thereby throw- 
ing light on the binding forces between the atoms in 
the crystal. 

In view of the potentialities of the anomalous scat- 
tering method, it would be worthwhile to devise and 
conduct experiments that could directly determine the 
amplitudes of the lattice waves. 
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